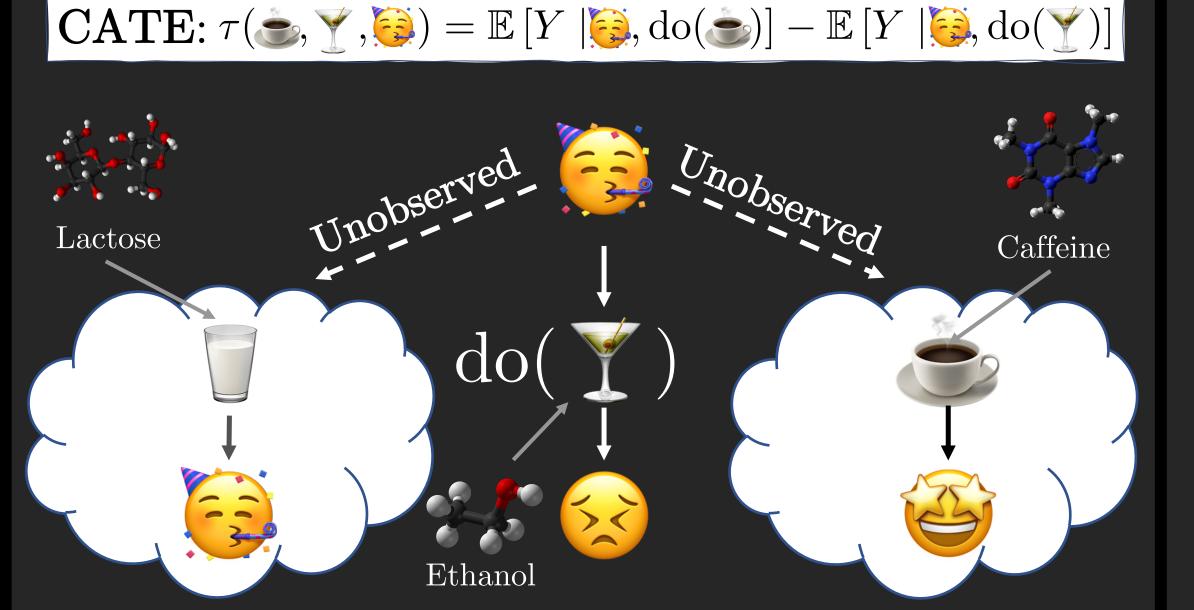
Causal Effect Inference for Structured Treatments

Jean Kaddour, Yuchen Zhu, Qi Liu, Matt Kusner, Ricardo Silva

Why: Motivation

- •Imagine you (described by X) had a Martini and felt unwell afterwards
- •If you had drunk something else, you might have felt much better
- •Goal: Estimate the effect of changing the drink T on the expected wellbeing Y



How: Generalized Robinson Decomposition (GRD)

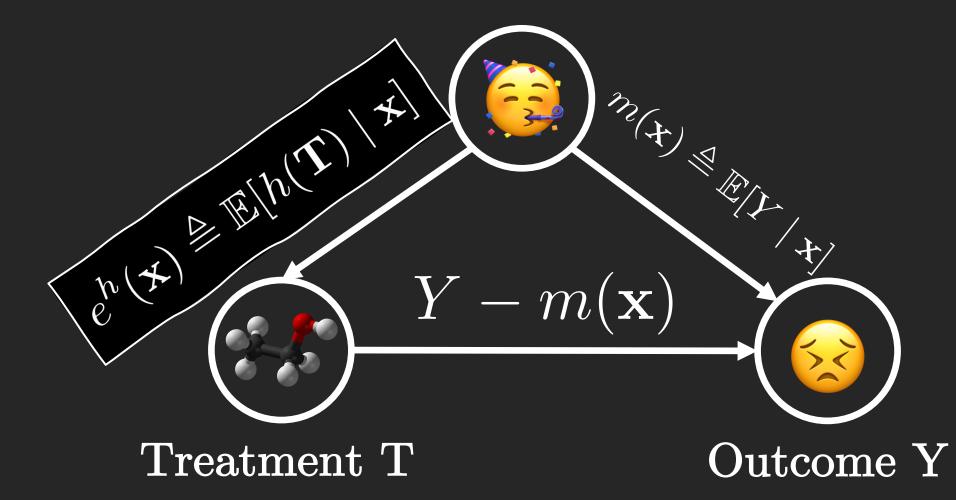
Causal effect as function of treatment features T $Y - m(\mathbf{X}) = g(\mathbf{X})^{\top} (h(\mathbf{T}) - e^h(\mathbf{X})) + \varepsilon$

Idea: Propensity features $e^h(\mathbf{x}) \triangleq \mathbb{E}[h(\mathbf{T}) \mid \mathbf{x}]$

$$e^h(\mathbf{x}) \triangleq \mathbb{E}[h(\mathbf{T}) \mid \mathbf{x}]$$

s.t. mean outcome $m(\mathbf{x}) \triangleq \mathbb{E}[Y \mid \mathbf{x}] = g(\mathbf{x})^{\top} e^h(\mathbf{x})$

Covariates X



Quasi-Oracle Convergence Guarantee

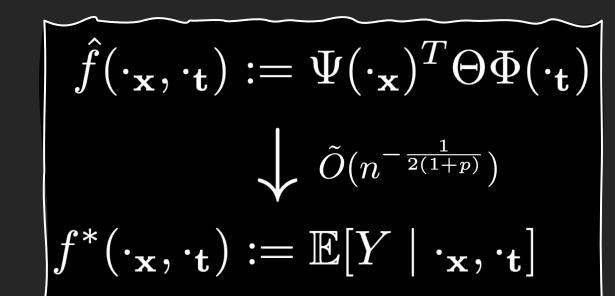
GRD achieves same error bounds as an oracle who has ground-truth knowledge of both nuisance components $e^h(\mathbf{x})$ and $m(\mathbf{x})$

CATE estimator converges at almost $n^{-1/2}$ rate (fastest rate possible), as long as nuisance functions converge at $n^{-1/4}$ rate.

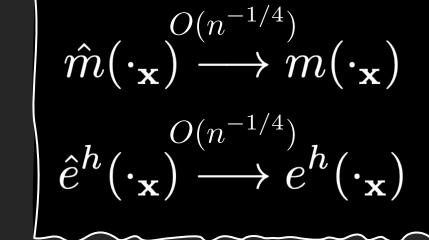
Assumptions:

- Orthogonal fixed feature maps of covariates $\Psi(\cdot_{\mathbf{x}})$ and treatments $\Phi(\cdot_{\mathbf{t}})$
- Overlap on these features $|\mathcal{P}_{\Psi(X)\times\Phi(T)}>0|$

Then:



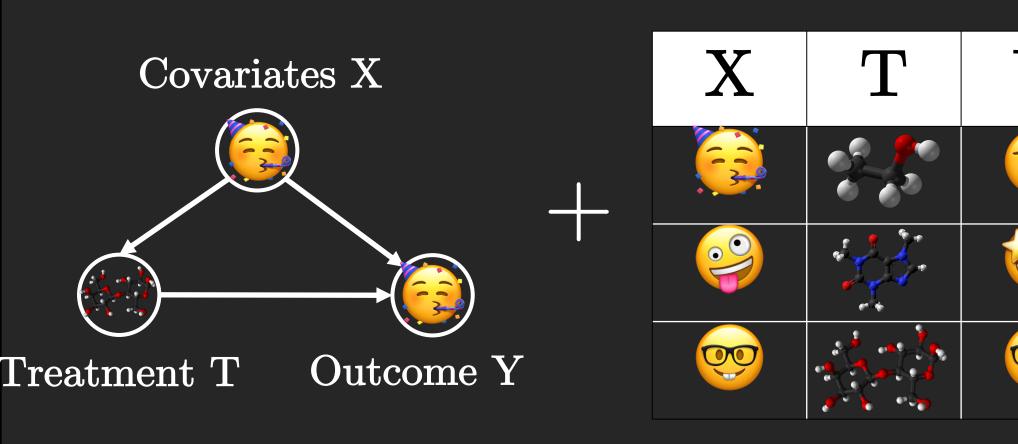
As long as



Setup: CATE of Structured Treatments $\mathbf{T} \in \mathcal{T}$ Algorithm: Structured Intervention Networks

Causal Graph

Observational data



Assumptions: Overlap, Unconfoundedness

 $\mathbf{CATE} \colon \tau(\cancel{\diamondsuit}, \cancel{\clubsuit}, \cancel{\diamondsuit}) = \mathbb{E}\left[Y \mid \cancel{\diamondsuit}, \cancel{\diamondsuit}\right] - \mathbb{E}\left[Y \mid \cancel{\diamondsuit}, \cancel{\clubsuit}\right]$

Stage 1: Learn parameters of $\widehat{m}_{\theta}(\mathbf{X})$ based on MSE objective

$$J_m(oldsymbol{ heta}) = \sum_{i=1}^m \left(y_i - \widehat{m}_{oldsymbol{ heta}}\left(\mathbf{x}_i
ight)
ight)^2$$

Stage 2: Alternate between optimizing $\widehat{g}_{\psi}(\mathbf{X}), \widehat{h}_{\phi}(\mathbf{T})$ and $\widehat{e}_{\eta}^{h}(\mathbf{X})$

• a: Freeze $\widehat{m}_{\theta}(\mathbf{X})$ and $\widehat{e}_{n}^{h}(\mathbf{X})$ to optimize $\widehat{g}_{\psi}(\mathbf{X}), \widehat{h}_{\phi}(\mathbf{T})$ based on

$$J_{g,h}(\boldsymbol{\phi}, \boldsymbol{\psi}) = \sum_{i=1}^{n} \left(y_i - \left\{ \widehat{m}_{\boldsymbol{\theta}} \left(\mathbf{x}_i \right) + \widehat{g}_{\boldsymbol{\psi}} \left(\mathbf{x}_i \right)^{\top} \left(\widehat{h}_{\boldsymbol{\phi}} \left(\mathbf{t}_i \right) - \widehat{e}_{\boldsymbol{\eta}}^h \left(\mathbf{x}_i \right) \right) \right\} \right)^2$$

• b: Freeze $\widehat{m}_{\theta}(\mathbf{X})$ and $\widehat{g}_{\psi}(\mathbf{X})$, $\widehat{h}_{\phi}(\mathbf{T})$ to optimize $\widehat{e}_{\eta}^{h}(\mathbf{X})$ based on

$$J_{e^h}(\boldsymbol{\eta}) = \sum_{i=1}^{n} \sum_{j=1}^{d} \left(\widehat{h}_{\boldsymbol{\phi}} \left(\mathbf{t}_i \right)^{(j)} - \widehat{e}_{\boldsymbol{\eta}}^h \left(\mathbf{x}_i \right)^{(j)} \right)^2$$

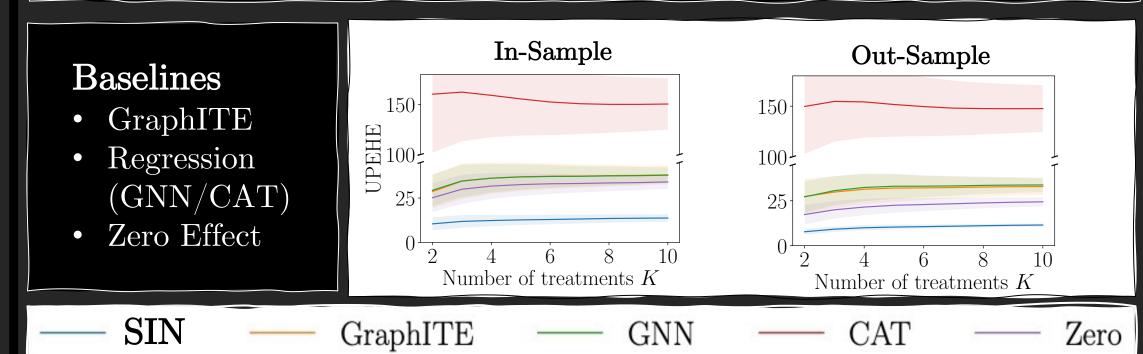
Exemplary Empirical results

Task: Predicting in/outsample CATEs

Data: The Cancer Genomic Atlas X: Gene expression data of cancer patients

T: Molecular graphs from QM9² database

Metric: Unweighted expected Precision in Est. of Het. Effects $\epsilon_{ ext{UPEHE}} \triangleq \int_{\mathcal{V}} \left(\widehat{\tau}\left(\mathbf{t}', \mathbf{t}, \mathbf{x}\right) - \tau\left(\mathbf{t}', \mathbf{t}, \mathbf{x}\right) \right)^2 d\mathbf{x}$



Code: https://github.com/jeankaddour/SIN